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Limitations of Existing Works

Pose Condition & ID Location OMG + InstantiD InstantFamily ID-Patch (Ours)

"An indoor celebration scene
featuring three women..."

Generation Time: 71.1s Generation Time: 9.6s Generation Time: 9.4s

« Dependent on additional model to provide mask. - Failin challenging

» |IDleakage:
a) imprecise masks (close interaction of faces)
) unintended information propagation through self-attention and convolutional layers



Method: ID-Paich
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* Time-efficient - Only additional process is to add ID patch on the condition image

* Independent on additional model to provide mask.

« Avoid ID leakage > modellearns to associate |IDs with their spatially designated locations.

« Seamlessly integrates with various types of spafial conditions (such as poses, canny edges or
depth map). - enhancing the robustness and flexibility of our method.



Pose-Free Generation

“three adults
enjoying a relaxed evening
at a rustic restaurant”

“a group of eight adults
at an outdoor party,
background of forest”

ID + ID Location

“five friends in black shirts
taking a selfie”

“fashion photoshoot of
two women in a studio”
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Plug-and-Play

ID-Patch ControlNet + Canny Edge ControlNet



Pose-Conditioned Generation

Pose-Free Generation ID-Patch on OpenPose Pose-Conditioned Generation
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Performance Comparison
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(a) Identity Resemblance (b) Association Accuracy (c) Generation Time
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Cosine Similarity accuracy of identity-position the time (in seconds) required
between face features association in generated images to generate an image on an
o NVIDIA A100 GPU
N 2_% 148 = (i)} (excluding the time taken for
model loading and image |/O)
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Visualization Comparison

ID + Pose

OMG

InstantFamily

ID-Patch (Ours)




Comparison
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Visualization Comparison

ID + Pose OMG InstantFamily ’ ID-Patch (Ours)
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